Intelligent Detection Devices

Photoelectric Smoke Detector
Model OP921

Product Overview
The Photoelectric Smoke Detector (Model OP921) uses state-of-the-art microcontroller circuitry and surface-mount technology for maximum reliability. Model OP921 incorporates an optical sensor using a light-scattering detection principle. The device utilizes advanced software algorithms to analyze the signals, and provides highly stable and accurate smoke detection.

Further, Model OP921 uses state-of-the-art microprocessor circuitry with error check; detector self-diagnostics, and supervision programs.

Field-Device Programmer / Test Unit
Model OP921 is compatible with the Siemens field-device programmer / test unit (Model 8720 / DPU), which is a compact, portable, menu-driven accessory for electronically programming and testing detectors easily and reliably.

Model 8720 / DPU eliminates the need for cumbersome, unreliable mechanical programming methods, such as dials or switches, and reduces installation and service costs by electronically programming and testing the detector prior to installation.

For proper operation of the field-device programmer / test unit, the technician selects the accessory's program mode, and enters the desired address. In turn, Model 8720 / DPU automatically sets and verifies the address, as well as tests the detector. When in the 'test' mode, Model 8720 / DPU will perform a series of diagnostic tests without altering the address or other stored data, allowing technicians to determine if the detector is operating properly.

Model 8720 / DPU operates on AC power or rechargeable batteries, providing flexibility and convenience in programming and testing equipment from practically any location.
Product Overview — (continued)

Model 8720 / DPU operates on AC power or rechargeable batteries, providing flexibility and convenience in programming and testing equipment from practically any location.

Model OP921 is a plug-in, two-wire and addressable photoelectric smoke detector. Model OP921 is Underwriters’ Laboratories Listed."UL268A Listed for direct in-air duct usage].

Each detector consists of a dust-resistant photoelectric chamber and microprocessor-based electronics with a low-profile plastic housing. Every Model OP921 fire detector is shipped with a protective dust cover:

![Smoke Detector Image]

1. Dust cover
2. Smoke detector

Operation

Model OP921 is a wide-spectrum, photoelectric smoke detector incorporating an infrared light-emitting diode (IRLED), and infrared light-sensing photodiode. Under normal conditions, light transmitted by the LED is directed away from the photodiode and scattered through the smoke chamber in a controlled pattern. The smoke chamber is designed to manage light dissipation and extraneous reflections from dust particles or other non-smoke, airborne contaminants in such a way as to maintain stable, consistent detector operation. When smoke enters the detector chamber, light emitted from the IRLED is scattered by the smoke particles, and is received by the photodiode:

![Smoke Detector Diagram]

1. Labyrinth
2. Optical transmitter
3. Optical receiver

Sensitivity Settings

Application Parameter Sets

Model OP921 provides four (4) pre-programmed sensitivity parameter sets that can be selected by the FACP to match the expected application or environmental conditions:

- Sensitive
- Standard
- Robust
- Air-duct

Sensitive: This application parameter set is practically suitable for areas where few misleading sources of false alarm are present, and is appropriate where priority is given to detecting open fires as soon as possible (e.g. — typically a clean application with controlled environmental conditions.)

Standard: This application parameter set is practically apt for normal office, hotel-lobby-type applications, and is the default setting.

Robust: This application parameter set offers improved resistance to false alarms in areas where misleading sources, such as cigarette smoke or exhaust fumes, may cause a nuisance alarm.

Air-Duct: This application parameter set is used when the detector is used a UL268A (DI) compliant direct in-air duct application without a duct housing.

Model OP921 does not require a field sensitivity test. Model OP921 is UL Listed as a self-testing device and complies with NFPA 72 as a self monitoring detector and control panel arrangement. This parameter set is also used when Model OP921 is used in air-duct housings (Models FDBZ492 and FDBZ492-HR).

The visible LED flashes green every 10 seconds to indicate communication with the FACP, and to notify Model OP921 has passed its self-test. Should Model OP921 sense a fault or failure within its system, the LED will flash amber, and the detector will transmit the data to the FACP.

A quick visual inspection is sufficient to indicate the condition of Model OP921 at any time. If more detailed information is required, a printed report can be provided from the compatible FACP, indicating the status and settings assigned to each individual detector. When Model OP921 moves to Alarm mode, the detector will flash red and continue flashing until the system is reset at the FACP. At that same time, any user-defined, system-alarm functions programmed into the system are activated.

Model OP921 contains a tri-color LED indicator, capable of flashing any one (1) of three (3) distinct colors: green, yellow, or red. During each flash interval, the microprocessor-based detector monitors the following:
Operation — (continued)

- Smoke sensitivity is within the range indicated on the nameplate label
- Smoke in its sensing chamber
- Internal sensors and electronics are functional

Based on the monitoring results, the LED indicator flashes the following colors based on the following conditions:

<table>
<thead>
<tr>
<th>Flash Color</th>
<th>Condition</th>
<th>Flash Interval (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green*:</td>
<td>Normal supervisory operation. Smoke sensitivity is within rated limits.</td>
<td>10</td>
</tr>
<tr>
<td>Yellow:</td>
<td>Detector is in trouble and needs replacement.</td>
<td>4</td>
</tr>
<tr>
<td>Red:</td>
<td>Alarm condition.</td>
<td>1</td>
</tr>
<tr>
<td>No Flash:</td>
<td>Detector is not powered.</td>
<td>— —</td>
</tr>
</tbody>
</table>

* LED can be turned OFF. Please follow the corresponding description of the panel used.

A quick, visual inspection is sufficient to indicate the condition of the detector at any time. If more detailed information is required, a printed report can be provided from the respective Cerberus PRO FACP that indicates the status and settings assigned to each individual detector.

Installation

All Model OP921 detectors use a surface-mounting base, Model DB-11 or Model DB-11E, which mounts on a 4-inch octagonal, square or single-gang electrical box. The base utilizes screw-clamp contacts for electrical connections and self-wiping contacts for increased reliability.

The Model DB-11 base can be used with the optional Model LK-11 detector locking kit, which contains 50 detector locks and an installation tool to prevent unauthorized removal of the detector head. Model DB-11 has decorative plugs to cover the outer-mounting screw holes.

Model OP921 may be installed on the same initiating circuit with the Siemens Model 'H'-series detectors [when used with the Cerberus PRO FACP] —

- Model HFP-11
- Model 'HMS'-series manual stations
- Model 'HTRI'-series interfaces
- Model HCP output-control devices
- Model 'HZM'-series of addressable, conventional zone modules

Application Data

Installation of Model OP921 detectors requires a two-wire circuit. In many retrofit cases, existing wiring may be used. ‘T-tapping’ is permitted only for Style 4 (Class B) wiring. Model OP921 is polarity insensitive, which can greatly reduce installation and debugging time.

Model OP921 can be applied within the maximum 30-feet center spacing (900 sq. ft. areas), as referenced in NFPA 72. This application guideline is based on ideal conditions — specifically, smooth ceiling surfaces, minimal air movement, and no physical obstructions between potential fire sources and the actual detector. Do not mount detectors in close proximity to ventilation or heating and air-conditioning outlets. Exposed joints or beamed ceilings may also affect safe spacing limitations for detectors.

Should questions arise regarding detector placement, observe NFPA 72 guidelines. Good fire-protection system engineering and common sense dictate how and when fire detectors are installed and used. Contact your local Siemens — Fire Safety distributor or sales office whenever you need assistance applying Model OP921 in unusual applications. Be sure to follow NFPA guidelines and @UL Listed / @ULC Listed installation instructions — included with every Siemens – Fire Safety detector — and local codes as for all fire-protection equipment.

Note: For Model OP921 compatibility to FireFinder® XLS, the XLS FACP requires Model PMI-2 (no firmware upgrade is required), or Model PMI (firmware Rev. 9 or higher is required). The detector’s compatibility also requires both of following:

- Rev. 9 (or higher) ZEUS custom-configuration software
- Rev. 6 (or higher) Device Loop Card (DLC) firmware

Technical Data

Operating Temperature Range: +32°F (0°C) to 120°F (49°C)

Relative Humidity: 0 – 95%; non-condensing

Air Pressure: No effect

Air Velocity: 0 – 4,000 ft. / min (0-20m / sec)

Input Voltage Range: 16VDC – 30VDC

Alarm Current (max.): 410μA

Standby Current (max.): 250μA, max. (average)

Maximum Spacing: 30-foot centers (900 sq. ft.), per NFPA 72

Detector Weight: 0.317 lbs. (0.144 kg.)

Mechanical Protection Guard: @UL Listed / @ULC Listed
(with STI Guard Model STI-9604)
NOTICE — The information contained in this data-sheet document is intended only as a summary, and is subject to change without notice. The devices described here have specific instruction sheets that cover various technical, limitation and liability information. Copies of these instruction sheets and the General Product Warning and Limitations document, which also contains important information, are provided with the product and are available from the Manufacturer. Information contained in these documents should be consulted before specifying or using the product. For further information or assistance concerning particular problems contact the Manufacturer.